Two-point stress–strain-rate correlation structure and non-local eddy viscosity in turbulent flows
نویسندگان
چکیده
Abstract
منابع مشابه
Large-eddy simulations of turbulent reacting stagnation point flows
A methodology for solving unsteady premixed turbulent flame propagation problems in high Reynolds number (Re), high Damkohler number (Da) spatially evolving flows is developed. The method is based on Large-Eddy Simulation (LES) with a subgrid combustion model based on the Linear-Eddy Model (Kerstein, 1991). An inter-LES cell burning mechanism has been added to the present formulation to account...
متن کاملLarge Eddy Simulations of Two-Phase Turbulent Flows"
A two-phase subgrid combustion model has been developed for large-eddy simulations (LES). This approach includes a more fundamental treatment of the effects of the final stages of droplet vaporization, molecular diffusion, chemical reactions and small scale turbulent mixing than other LES closure techniques. As a result, Reynolds, Schmidt and Damkohler number effects are explicitly included. Th...
متن کاملPrediction of Transonic Vortex Flows Using Linear and Nonlinear Turbulent Eddy Viscosity Models
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role. The NASA STI Program Office is operated by Langley Research Center, the lead center for NASAÕs scientific and technical information. The NASA STI Program Office provides ...
متن کاملEddy viscosity of cellular flows by upscaling
The eddy viscosity is the tensor in the equation that governs the transport of the large-scale (modulational) perturbations of small-scale stationary flows. As an approximation to eddy viscosity the effective tensor, that arises in the limit as the ratio between the scales ε → 0, can be considered. We are interested here in the accuracy of this approximation. We present results of computational...
متن کاملLarge-Eddy Simulation of Turbulent Reacting Flows
Numerical simulations of combustion in aircraft engines is quite complex, as it requires an adequate description of liquid fuel injection, liquid fuel atomization, drop breakup, drop dynamics, and evaporation, large-scale turbulent fuel air mixing, small scale molecular fuel air mixing, chemical reactions, and turbulence/chemistry interactions. In the present paper, we have identified three of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Fluid Mechanics
سال: 2021
ISSN: ['0022-1120', '1469-7645']
DOI: https://doi.org/10.1017/jfm.2020.977